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Abstract
K fields, that is, fields with a non-standard kinetic term, allow for soliton
solutions with compact support, i.e., compactons. Compactons in 1+1
dimensions may give rise to topological defects of the domain wall type and
have finite thickness in higher dimensions. Here we demonstrate that, for
an appropriately chosen kinetic term, the propagation of linear perturbations is
completely suppressed outside the topological defect, confining the propagation
of particles inside the domain wall. On the other hand, inside the topological
defect the propagation of linear perturbations is of the standard type, in spite of
the non-standard kinetic term. Consequently, this compacton domain wall may
act like a brane of finite thickness which is embedded in a higher dimensional
space, but to which matter fields are constrained. In addition, we find strong
indications that, when gravity is taken into account, location of gravity in the
sense of Randall–Sundrum works for these compacton domain walls. When
seen from the bulk, these finite thickness branes, in fact, cannot be distinguished
from infinitely thin branes.

PACS number: 11.25.−w

1. Introduction

In the last two decades, the notion of a universe with more than three space dimensions
has excited interest both in cosmology and in theoretical high-energy physics. One way to
reconcile this idea with the observational fact that only three space dimensions are perceived is
the assumption that the additional dimensions are too small to be detected. Another possibility
is to assume that matter and (at least, non-gravitational) interactions are restricted to a lower
dimensional (concretely, three-dimensional) subspace. This subspace may be either strictly
lower dimensional, in which case the name ‘three-brane’ has become customary. Some recent
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reviews about these cosmological three-branes can be found, e.g., in [1–3], which also serve
as sources for further references on the subject (which are too numerous to be quoted here).
Or the subspace may have a finite, although probably very small, extension in the additional
dimensions, that is, it is of the topological defect type [4, 5]. In the latter case, the name
‘thick brane’ has been coined recently for this subspace on which the matter propagation
takes place (see, e.g., [6–10] for some recent work). At least for a ‘thick brane’, a dynamical
mechanism certainly has to be identified which provides the confinement of all matter fields
to the subspace. It is the purpose of this communication to provide an alternative mechanism.
Our proposal bears some similarity to the work of others (e.g. [5]), in the sense that the ‘thick
brane’ is formed by a topological defect, but the mechanism of confinement of the matter
fields is different. The basic idea is, in fact, very easy to understand. Usually, the restriction of
the propagation to a topological defect is achieved by a potential which becomes very strong
outside this topological defect. But the propagation of a field is generally determined by a
balance between potential and kinetic terms. Another possibility for restricting the propagation
to the topological defect is, therefore, a kinetic term which becomes very small away from the
defect, thereby enforcing that the field takes its vacuum value in that region. This is precisely
what may happen in the case of K fields, that is, field theories with a non-standard kinetic
term.

K fields already play a rather prominent role in cosmology, where they offer a possible
mechanism for early time inflation (under the name of K inflation) [11–13], as well as a
possible explanation both for the value of the cosmological constant (problem of smallness,
coincidence), and for the late-time acceleration [14–17], which has been found to be a property
of our universe in the last decade. In the latter case, these models are nowadays known as K
essence theories.

2. The model

To illustrate our proposal, we shall consider the simplest possible setting where spacetime is
(4+1)-dimensional Minkowski space, and the topological defect will be a simple domain wall
which is effectively three dimensional. The field theory is given by the Lagrangian density

L = 4|X|X − V (ξ), (1)

where

X ≡ 1
2∂Mξ∂Mξ, (2)

V (ξ) ≡ 3λ4(ξ 2 − a2)2, (3)

with ξ being a scalar field, λ and a are positive constants and M = 0, . . . , 4. Further, we use the
Minkowski metric gMN = diag(1,−1,−1,−1,−1). The choice of the non-standard kinetic
term equal to 4|X|X instead of 4X2 is not important for the purpose of this communication
(i.e., for the existence of the compacton solution and for the linear perturbation analysis), but
it is important for the global stability of the field theory (1). For the kinetic term 4X2, the
energy is not bound from below, see [18] for a detailed discussion.

The first fact about the theory (1) which we need is that when restricted to 1+1 dimensions,
it has soliton solutions with compact support. Indeed, choosing, e.g. x4 ≡ y, the theory has
the solution

ξ(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−a y � − π

2λ

a sin λy − π

2λ
� y � π

2λ

a y � π

2λ
,

(4)
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which interpolates between the two distinct vacuum values −a and a, see [18] for details (for
a more general discussion of compactons, we refer to [19–21]). This compacton solution
is continuous and has continuous first derivative. It is a domain wall solution in the (4+1)-
dimensional Minkowski space.

Remark. The compacton configuration has a non-continuous second derivative at the
compacton boundary. In the field equations, however, this discontinuity is multiplied by
zero whenever it shows up (i.e., multiplied by some power of the first derivative), so that the
expression for the field equation is continuous everywhere.

Remark. The Cauchy problem at the compacton boundary (i.e., for the initial conditions
ξ(y0) = a, ξy(y0) = 0) is not well defined. The determining equation for ξyy(y0) is, in
fact, a cubic equation with the three roots ξyy(y0) = 0,±aλ2, corresponding to the vacuum,
compacton and anticompacton, respectively. Once this ambiguity is resolved, the solution
is unique in a finite neighborhood of y0 (e.g., up to the other boundary of the compacton).
Observe that y0 is arbitrary due to translation invariance.

In a next step, we want to study the behavior of linear perturbations about the domain
wall (i.e., the compacton). Here one simply inserts the field

ξ(xM) = ξ0(y) + η(xM) (5)

(where ξ0 is the compacton and η is the fluctuation) into the action of the theory (1). The
resulting linear equation for the fluctuation field for a general Lagrangian density is (see
[18, 22])

∂M

(
LXδM

N + LXXξM
0 ξN

0

)
ηN − Lξξ η = 0, (6)

where LX ≡ ∂XL, ξM
0 ≡ gMN∂Nξ0, etc. Further, we already took into account that there are no

mixed terms in the Lagrangian, that is, LXξ = 0. In the above expression the derivatives of the
Lagrangian have to be evaluated for the compacton field. For our model we have concretely

LX = 8|X|, LXX = 8sign(X), Lξξ = −12λ4(3ξ 2 − a2). (7)

Taking into account that for the compacton ξM = δ4
Mξx4 , etc, we find the equation (where

again x4 ≡ y)

−24sign(X)Xyηy − 24|X|ηyy + 8|X|∂µ∂µη + 12λ4
(
3ξ 2

0 − a2
)
η = 0, (8)

where X, etc have to be evaluated for the compacton field, and µ = 0, . . . , 3. In the region
outside the compacton, where ξ0 takes its vacuum values ±a, all terms involving derivatives
of the linear perturbation η are multiplied by zero, because X = 0 and Xy = 0 in that region.
There we are left with

12λ4
(
3ξ 2

0 − a2
)
η = 24λ4a2η = 0, (9)

which has the only solution η = 0. There are, therefore, no linear perturbations in that region,
that is, all particle propagation is completely suppressed.

Inside the compacton we need the expressions

∂yξ0 = aλ cos λy, X = − 1
2a2λ2 cos2 λy (10)

and

Xy = a2λ3 sin λy cos λy (11)

to arrive at the equation (after a division by 12a2)

−cos2 λyηyy + 2λ sin λy cos λyηy + λ2(3 sin2 λy − 1)η + 1
3 cos2 λy∂µ∂µη = 0 (12)

3
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or, after the variable change z = λy,

Hη = − 1

3λ2
cos2 z∂µ∂µη, (13)

where the differential operator H is

H ≡ − cos2 z∂2
z + 2 sin z cos z∂z + 3 sin2 z − 1. (14)

For a further evaluation, we use the separation of variables ansatz η = η̄(z)�(xµ), which
leads to the equations

Hη̄ = ω2 cos2 zη̄ (15)

and

∂µ∂µ� + 3ω2λ2� = 0. (16)

Before further discussing these equations, we have to determine the space of functions on
which the operator H is supposed to act. We want the perturbation η to be continuous at the
boundary of the compacton, i.e., at z = ±π/2; therefore the space of functions is

η̄(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 z � −π

2∑∞
n=1 bn cos nz −π

2
� z � π

2
0 z � π

2
.

(17)

Observe that the operator H maps the space of functions (17) into itself, so its action is well
defined on this space. Observe also that the first derivative is not continuous at the compacton
boundary, which is consistent with the fact that the compacton itself is continuous together
with its first derivative. Observe, finally, that there is no discontinuous term in equation (15),
because whenever a discontinuous factor appears in that equation, it is multiplied by zero.

It is easy to prove that the operator H is positive semi-definite on the space of functions
(17), see section 4.4 of [18]. It has, in fact, one zero mode η̄0(z) = cos z, i.e., H cos z = 0,
and is positive definite on the subspace η = ∑∞

n=2 bn cos nz. Therefore, equation (15) has the
general solutions

Hη̄n = ω2
n cos2 zη̄n, ω2

0 = 0, ω2
n > 0 for n � 1. (18)

As a consequence, the field equations (16) for the fields �(xµ) on the domain wall (the ‘thick
brane’) are just a collection of ordinary Klein–Gordon equations. There exists one massless
field due to the zero mode ω0 = 0 in equation (18), which is just the Goldstone field for the
spontaneously broken translational invariance in the x4 direction. The other Klein–Gordon
equations are for positive square masses m2

n = 3ω2
nλ

2, so there are no tachyons on the brane.
The propagation of perturbations on the brane is, therefore, completely standard in spite of
the non-standard kinetic term of the model. The only way in which the original, nonstandard
theory enters at this stage is in the determination of the values for the masses m2

n, which
depend on the parameters of the original theory. The whole setting is, in fact, quite similar to
the reduction in the familiar Kaluza–Klein case, in spite of the noncompact fifth dimension
in our case. Finally, the modes for nonzero m2

n can always be removed from the physically
accessible spectrum by choosing λ sufficiently large.

3. Backreaction and localization of gravity

In the sequel, we shall investigate the K-field equations in the presence of gravity, and the
possibility of localizing gravity in compacton solutions like the one described above. We will

4
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couple the scalar field to gravity minimally, and include the dynamics of the gravitational
sector in the form of a canonical 5D Einstein term. The action is

S =
∫

d5x
√−g(κ−2(R − 
) + 4|X|X − V (ξ)), (19)

where 
 is a cosmological constant and X now includes the metric

X = 1
2gMN∂Mξ∂Nξ. (20)

The resulting Einstein equations read

κ−2GMN = 4|X|∂Mξ∂Nξ − 1
2gMN(−κ−2
 + 4|X|X − V (ξ)). (21)

We will choose a 5D metric ansatz with a Minkowskian 4D slice, written in the form

ds2 = e−A(y)(dt2 − d�x2) − dy2, (22)

while for the scalar field we assume ξ = ξ(y) as before. The independent components of the
Einstein equations now read

3
4Ayy − A2

y = 1
3 (
 + κ2V (ξ)) 3

4Ayy = κ2ξ 4
y . (23)

The next step would be to solve the boundary value problem for the above coupled system (23)
to prove that the compacton solution is not spoiled by the gravitational backreaction. Since
the solution of the full system will be more complicated, we will just assume in a first step
that the solution exists and explore the effects of the compacton on the gravitational degrees
of freedom.

By definition, outside the support of the compacton the K field ξ is in its vacuum ξ = ±a.
There the equations for A take the form

A2
y = − 1

3
 Ayy = 0 (24)

that immediately imply the vacuum AdS solution A = √−
/3|y| + constant ≡ Ā. This
represents exactly the same bulk solution as in the case on an infinitely thin brane [23].

The metric perturbation analysis for the case of a thick brane has been performed in [6].
The main result is that the 4D graviton decouples from scalar field perturbations and that, to
see whether there is localization of gravity, one should prove that the graviton wavefunction
e−A is normalizable. In other words we should verify that∫

dy e−A < ∞. (25)

This is obviously satisfied for the above solution, provided it is completed inside the compacton
with an integrable function. The corresponding 4D Planck mass reads

M2
4 = κ−2

∫
dy e−A. (26)

Separating the above integral into its contributions inside the compacton and outside it, using
the fact that the exterior solution for A is that of an infinitely thin brane Ā, and adding and
subtracting the interior contributions for Ā, we get

M2
4 = M̄2

4 + κ−2
∫

int
dy(e−A − e−Ā), (27)

where M̄4 is the 4D Planck mass for an infinitely thin brane with the same bulk solution. The
function in parentheses vanishes at the boundary of the compacton, and its first derivative also
vanishes. Its second derivative is negative for positive y and positive for negative y. The only
possible conclusion is that the function itself is negative inside the support, giving a negative
contribution to the effective four-dimensional Planck mass.

5
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The conclusion is that, if the compacton solution still exists in the backreacting system, it
represents a finite thickness braneworld that is indistinguishable from an infinitely thin brane
when it is seen from the bulk. The observer on the brane, on the other hand, measures localized
4D gravity with a Planck mass suppressed with respect to that of the infinitely thin case.

We still should comment on the solution of the full system and on the related stability of the
compacton under gravitational backreaction. First of all, it still remains true that for vacuum
boundary conditions (i.e., for ξ(y0) = a, ξy(y0) = 0), the second derivative is not uniquely
defined but, instead, obeys a cubic equation with the three roots ξyy(y0) = 0,±aλ2. This
indicates that it should still be possible to join the vacuum with the compacton or anticompacton
boundary, respectively. Second, both a power series expansion about the compacton boundary
and a numerical integration from a point very near the compacton boundary (i.e., with the
inclusion of the second derivative ξyy(y0) in order to have a well-defined solution) up to
the center of the compacton (a point y1 such that ξ(y1) = 0) lead to very reasonable results.
The radius of the compacton |y1 − y0| is very similar to the case without gravitation for
sufficiently small values of the cosmological constant 
 and gravitational coupling κ . Further,

 tends to increase the compacton radius, whereas κ tends to shrink it, in complete agreement
with general expectations. A detailed analytical and numerical discussion of the full K field
and gravitation system is beyond the scope of this communication and shall be presented
elsewhere.

4. Discussion

We have proposed a simple and efficient mechanism for the production of thick branes, that
is, topological defects within a higher dimensional space, to which the propagation of linear
perturbations is confined. These thick branes have the interesting property that they are of
strictly finite extension in the additional dimension. The main ingredients of the proposal
are the use of a model with a non-standard kinetic term and the observation that topological
defects with a compact support (compactons) exist in such models. The total suppression
of the propagation of fields outside the support of the compacton is an automatic result of
the model. Furthermore, propagation inside the topological defect (i.e., inside the brane) is
standard in spite of the non-standard kinetic term. Specifically, there are no tachyons on the
brane, and the evolution of linear perturbations is both unitary and causal. Inside the brane,
the only remaining effect of the original K field theory resides in the values of the masses of
the (Klein–Gordon-type) linear fluctuation field. A study of the dynamical evolution of the
full system, i.e., the inclusion of time dependence would therefore be very interesting, in order
to discriminate the resulting physics on the brane from other scenarios.

Let us emphasize that in this communication our main purpose was to present the generic
mechanism of thick brane generation via K fields and compactons. For a possible use of
this idea in cosmological or particle physics considerations, additional structures have to be
added. First of all, the existence of compacton solutions and the suppression of propagation
in a vacuum background is a rather generic feature of K field theories. All that is needed is
that the kinetic term remains non-standard in a specific way for fields near their vacuum value
[18]. There exists, therefore, a large class of K field theories which show essentially the same
features. Second, it will be of interest to add fermions to the theory, which probably give rise
to the presence of fermionic zero modes, as in the case of a standard background topological
defect [5]. This may also open the way for introducing supersymmetry for K field theories.
Third, the system with gravity included should be further analyzed. We already found that,
provided the compacton domain wall is not destabilized by the addition of gravity, bulk gravity
solutions of the Randall–Sundrum type (that is, localization of gravity on the brane) do exist.

6
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Further, we found strong indications for the stability of the full system with gravity included.
Still, this latter issue should be investigated in more detail. A fourth issue not touched in this
communication is the question whether theories with a non-standard kinetic term of the type
required for the existence of compactons may be induced as effective low-energy theories
from some more fundamental theories at higher energies. These and many more problems are
subject to further investigations.
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